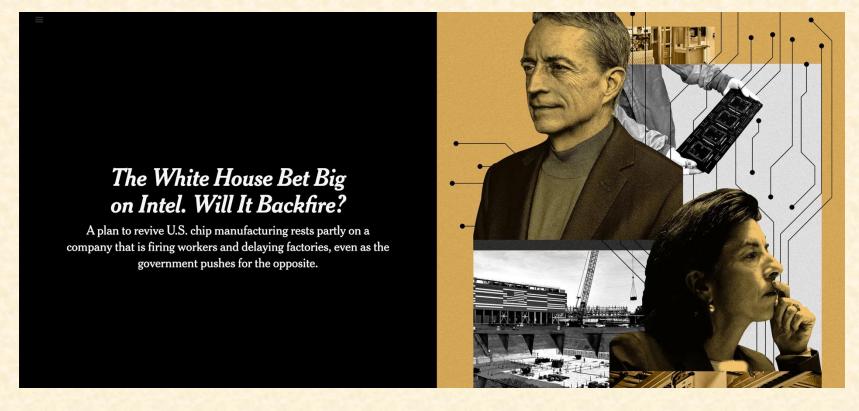


Data Centers: Future Challenges

Theresa Pugh

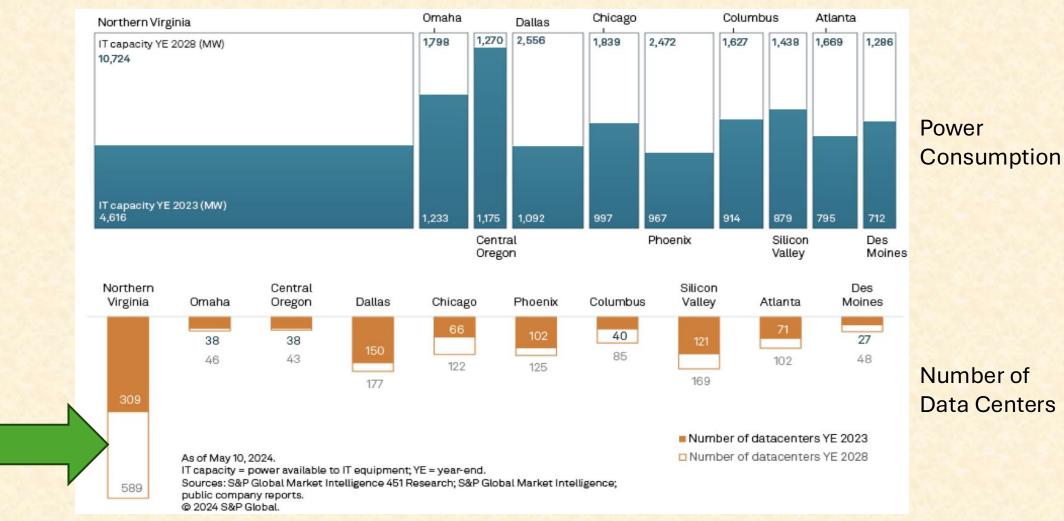
Theresa Pugh Consulting, LLC


Nov 1, 2024

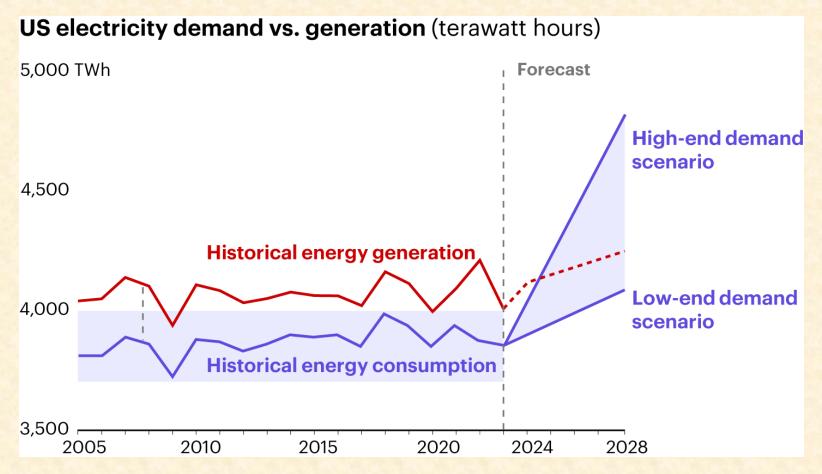
Approx 400 New Factories Announced Since CHIPS and IRA Passed - These Are Largest Electricity Demand

State								
AL	Nucor steel							
ΑZ	\$1.2 billion start up battery mfg; TSMC (Taiwan) chip plant largest outside Taiwan expected near Phoenix							
CA	Lithium extraction; EV auto battery plant							
СТ	Farmington \$40 mil sheet metal							
DE	Castle/Wilmington PA & NJ microfilm surfacing							
GA	Greater Atlanta & other parts EV related, EcoPlastic, Pratt & Whitney							
KS	Panasonic- no details							
IL	TBA for chocolate factory, Tilamook ice cream – factories surpassed by data center load expected							
IN	\$3 billion by Samsung SDI-GM battery mfg.; GM \$491 Marion metal center for EVs w/ArcelorMittal steel scrap expansion							
MA	Bristol Meyers Squib \$40 mil personalized cancer treatment- generated Al expected to support							
KY	Unnamed steel & EV factories							
MI	Toyota \$50 mil battery lab; \$1 bil paper plant; unnamed pharmaceutical plant (state has always had some power shortages along Canadian border with imported power from Canada)							
	\$35 million investment in existing plant w/new filtration equipment upgrades for biotech companies; Hitachi \$1.5 billion for new distribution transformers							
MN	Medical lab with heavy data demand							
MS	Siemens EV charging distribution center (essential for Dallas plant)							
NM	Intel packaging \$3.5 billion investment in NM							
NE	Plattsmouth NE (near Omaha)							
	CHIPS Act funding up to 9 semiconductor plants in upstate NY (Micron &							
NY	AMD): Svracuse & Saratoga							

	State								
	NC	\$450 million unnamed; \$180 million for lithium plant; Henkel adhesives, Nucor steel & Eli Lilly							
	NV	TBD primary gigafactory and two secondary plants in Sparks NV							
		Abbott \$536 million, 2 Intel fab plants w/optional 6 more fab plants; Ultium							
	ОН	lithium product; Nth Cycle; Abbott mfg.							
	OR	GM specialty & PHARMA chemicals							
	PA	EcoLabs, G&S Foods							
	RI	Polaris and defense mfg. consortium							
		1,000 jobs; \$130 million, \$3.5 billion auto mfg.; \$60 million BorgWarner,							
		VW \$1.5 billion; NEPHRON pharm & \$4 billion more sm. factories; Schneider							
	SC	Electric distribution transformers							
	TN	GKN Aerospace; GM battery plant with either Samsung or LG							
/									
		\$17 billion AMD/Global Foundries semiconductor plant, \$150 mil Siemens;							
		4 phase semiconductor fab expansion DFW;TX Instruments Fab plant for							
	TX	Apple Computer; GKN Aerospace titanium jobs to FW							
	UT	Possible semiconductor plant							
	VA	LEGO							
		GM GlobalFoundries essential for NY new plant- VT is state with Canadian							
	VT	imported power							
		\$150 million facility; \$760 million in iron-air battery; Omnis Bldg							
	WV	/ Technologies \$40 million in Bluefield							
	WA	Nestle- few details							
	WI								


Complexities of Counting on US Semiconductor Industry and Relationship to Economics of Data Centers Under CHIPs Act

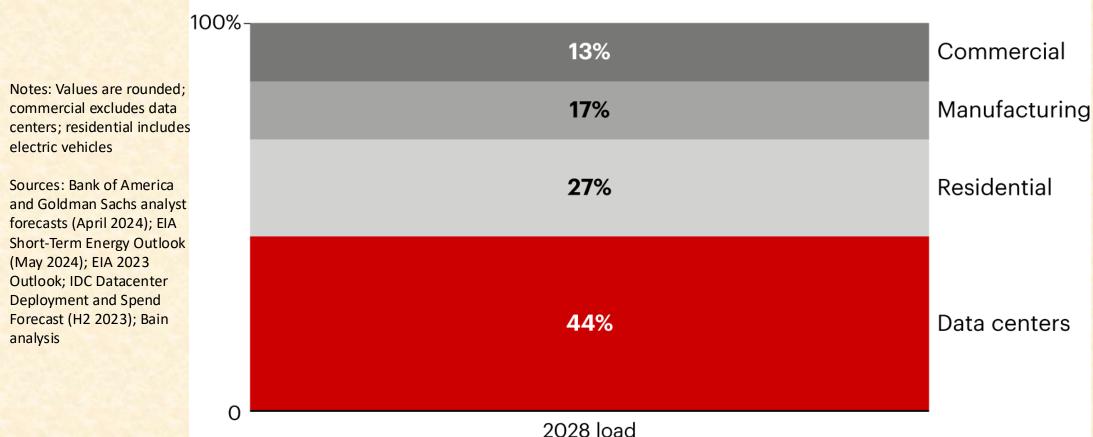
https://www.nytimes.com/2024/10/24/us/politics/intel-chipsbiden.html?unlocked_article_code=1.Uk4.UmsE.Vk_xHVTftGru&smid=em-share



Estimated Operational and Planned U.S. Data Center Space and Power Consumption

Data Visualization by Chrisallen Villanueva

U.S. Electricity Demand Could Exceed Supply Within The Next Few Years



All told, meeting global data center demand could cost more than \$2 trillion in new energy generation resources, according to Bain estimates.

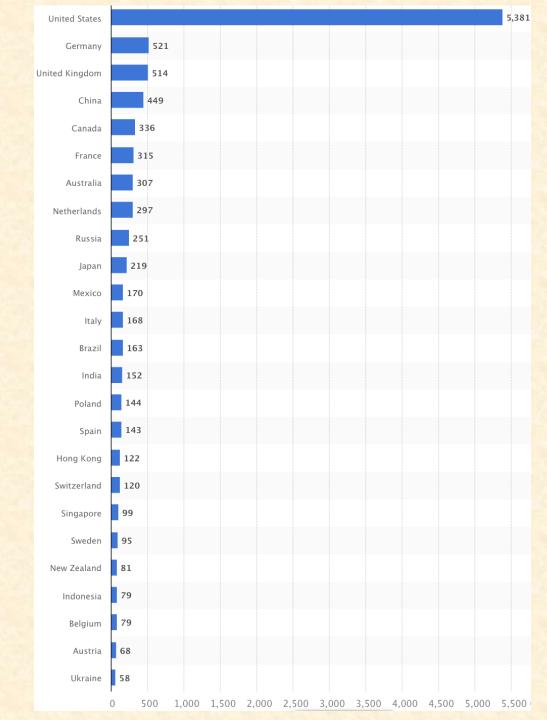
Notes: Demand forecast is an aggregate of multiple industry forecasts; historical numbers and generation forecast based on EIA data; historical gap between energy generation and consumption necessary to ensure sufficient load that accounts for some energy loss in transmission Sources: EIA 2023–2025 Short-Term Energy Outlook (May 2024); EIA 2025–2028 Energy Outlook (March 2023); ISO reports (H2 2023 – H1 2024); FERC; Grid Strategies; Goldman Sachs and Bank of America analyst forecasts (April 2024); Bain analysis

Data Centers Will Account For The Largest Share Of New Electricity Demand Growth In The U.S. Over The Next Few Years

Getting Creative On Pricing And Financing To Protect The Balance Sheet And Existing Customers


Traditional rate structures, which spread costs evenly across customer groups, are inadequate for the vast energy demands of data centers.

Some utilities are developing new rate designs that ensure data centers bear the full incremental costs of their energy usage, including long-term contracts with minimum charges.


These deals help protect other customer groups' rates and ensure that the utility can recoup its investment in case data center energy consumption fluctuates.

Source: Bain & Company

US Data Center Map

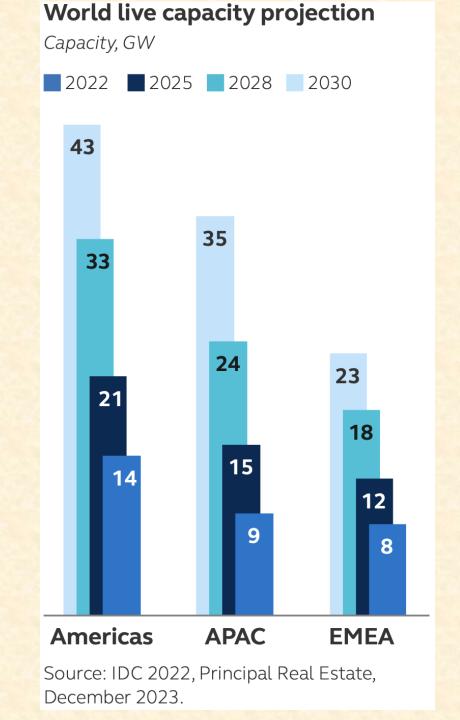
https://www.datacentermap.com/usa/

Leading Countries By Number Of Data Centers As Of March 2024

We assume all new data centers might be built here- there are some foreign locations of retired coal fired power plants, steel mills, chemical plants and simply wide open spaces with enormous electric transmission that provide great opportunities for Al growth.

As of March 2024, there were a reported 5,381 data centers in the United States, the most of any country worldwide.

Source: Statista https://www.statista.com/statistics/1228433/data-centers-worldwide-by-country/#statisticContainer


Pugh is Not as Smart as Bain But Wonders

- Available nuclear and hydropower generation in countries like Germany, UK, Canada, Sweden and abundance of water for data center growth
- Limited nuclear energy options in Europe now- will data centers and semiconductor plan opportunities force Germany to revisit nuclear power?
- Countries like Germany may desire data center tax revenue with drop in manufacturingbut how to still meet decarbonization goals?
- Watch for India and SE Asia if they can use Indian coal or get LNG imports & nat gas pipelines fast enough

Predicting Why AI Drives Higher Electricity Demand & Water Use for Cooling Than Typical Data Centers

Al are far more power-hungry than traditional CPUs, often consuming over 1000W per chip. Al racks can require 50-100kW, compared to 5-10kW for typical enterprise workloads. This means data centers must provide significantly more power and cooling capacity per square foot to keep up with Al demands.

Source: Principal Asset Management

Scary Fun Facts About Water Use and Data Centers

"Roughly two-week training for the GPT-3 Al program in Microsoft's state-of-the-art U.S. data centers consumed about 700,000 liters of freshwater, about the same amount of water used in the manufacture of about 370 BMW cars or 320 Tesla electric vehicles."

"Training GPT3 in Microsoft's state of the art U.S. data centers can consume a total of 5.4 liters of water for on-site water consumption or 500 ml bottle of water for roughly 10-50 responses".

Al-Generated Data Center Image

Source:

"Making Al Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of Al Models"

If 40% of Data Center Electricity Consumption is Based Upon Zombie Space and Cooling Towers...

Watch for these two promising energy efficiency improvements:

- Siemens' new White Space Cooling Optimization (elimination of Zombie or Ghost space)
- 3M's non-water chilling 'chemicals' products that look like water and can cool the racks faster

Estimate of Microsoft's Water Consumption Footprint as of July 2023


			Electricity Weter	Setuinity Material Materials (million I)					Water for Each Inference (mL)			
Tassiiss	DITE	WUE	Electricity Water	Water for Training (million L)					# of Inferences			
Location	PUE	(L/kWh)	Intensity	On-site	Off-site	Total	On-site	Off-site	Total	for 500ml		
		,	(L/kWh)	Water	Water	Water	Water	Water	Water	Water		
U.S. Average	1.170	0.550	3.142	0.708	4.731	5.439	2.200	14.704	16.904	29.6		
Wyoming	1.12 5	0.230	2.574	0.296	3.727	4.023	0.920	11.583	12.503	40.0		
Iowa	1.160	0.190	3.104	0.24 5	4.634	4.879	0.760	14.403	15.163	33.0		
Arizona	1.223	2.240	4.959	2.883	7.80 5	10.688	8.960	24.259	33.219	15.1		
Washington	1.156	1.090	9.501	1.403	14.136	15.539	4.360	43.934	48.294	10.4		
Virginia	1.144	0.170	2.38 5	0.219	3.511	3.730	0.680	10.913	11.593	43.1		
Texas	1.307	1.820	1.287	2.342	2.16 5	4.507	7.280	6.729	14.009	35.7		
Singapore	1.358	2.060	1.199	2.651	2.096	4.747	8.240	6.513	14.753	33.9		
Ireland	1.197	0.030	1.476	0.039	2.274	2.313	0.120	7.069	7.189	69.6		
Netherlands	1.158	0.080	3.44 5	0.103	5.134	5.237	0.320	1 5 .9 56	16.276	30.7		
Sweden	1.172	0.160	6.019	0.206	9.079	9.284	0.640	28.216	28.856	17.3		
Mexico*	1.120	0.056	5.300	0.072	7.639	7.711	0.224	23.742	23.966	20.9		
Georgia*	1.120	0.060	2.309	0.077	3.328	3.406	0.240	10.345	10.585	47.2		
Taiwan*	1.200	1.000	2.177	1.287	3.362	4.649	4.000	10.448	14.448	34.6		
Australia*	1.120	0.012	4.259	0.015	6.138	6.154	0.048	19.078	19.126	26.1		
India*	1.430	0.000	3.44 5	0.000	6.340	6.340	0.000	19.704	19.704	25.4		
Indonesia*	1.320	1.900	2.271	2.44 5	3.858	6.304	7.600	11.992	19.592	25.5		
Denmark*	1.160	0.010	3.180	0.013	4.747	4.760	0.040	14.754	14.794	33.8		
Finland*	1.120	0.010	4.542	0.013	6.548	6.561	0.040	20.350	20.390	24.5		

Source:

"Making Al Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of Al Models"

Isn't Efficiency Guaranteed To Improve Over Time?

Gains in power usage efficiency have stalled during the past decade.

¹A measure that shows the amount of power used by the computing equipment in a data center relative to its total energy consumption. The closer PUE is to 1, the more efficient a data center's power usage is.
Source: Uptime Institute Intelligence

McKinsey & Company

"Efficient cooling is therefore a crucial driver of a data center's profitability. Cooling accounts for some 40 percent of a data center's energy consumption. The cost of downtime from overheating can be high.

Cooling technology has improved rapidly over the past decade. Most large data centers have replaced old air-conditioning-like systems that keep entire rooms cool with in-row or rotodynamic heater-based cooling designs: heat emitted from servers is drawn away by fans and then cooled with water or a refrigerant. Yet even better performance is required because today's more advanced systems can struggle to control the temperatures associated with global warming. Google and Oracle, for instance, both faced downtime during a heatwave in Europe this past summer."

Source: McKinsey & Company

Contact:

Theresa Pugh

Theresa Pugh Consulting, LLC

pugh@theresapughconsulting.com

703-507-6843

www.theresapughconsulting.com

