Electricity, EVs, and More...

Batt Odgerel, Energy Policy Research Foundation

December 5, 2023

www.eprinc.org

IEA Net Zero: Fossil % from 80% today to 16% in 2050

Exajoules Renewables 600 15 Nuclear 29 Trad.bio 24 500 Solar 138 Oil 187 400 Wind 84 300 Hydro 30 Gas 144 Bioenergy 99 200 Other.ren 34 Nuclear 67 100 Coal 170 All fossil 89 (incl. CCUS) 0 2050 2022 2030 2040

Global Primary Energy Supply under IEA Net Zero Scenario (2023)

Source: IEA Net Zero Update 2023

* Flows/values of less than 25 Mtoe are not shown.

Source: Glen Sweetnam and Batt Odgerel, EPRINC analysis and figure based on IEA data 4

**Other energy sector "covers the use of energy by transformation industries and the energy losses in converting primary energy into a form that can be used in the final consuming sectors." (IEA)

Role of Power Sector in Energy Transition

(Million tonnes of oil equivalent)

Energy Policy Research Foundation

Role of Power Sector in Energy Transition

(Million tonnes of oil equivalent)

* Flows/values of less than 25 Mtoe are not shown.

Source: Glen Sweetnam and Batt Odgerel, EPRINC analysis and figure based on IEA data 6

**Other energy sector "covers the use of energy by agriculture, transformation industries and the energy losses in converting primary energy into a form that can be used in the final consuming sectors." (IEA)

Global Electricity Generation Scenarios

Share of Electricity in Total Final Consumption

Global Electricity Generation by Source

IEA Net Zero: Final Consumption By Sector

IEA EV Outlook: Historical and Projected EV (Cars) Stock

Source: Energy Policy Research's analysis of IEA EV Outlook 2023

Energy Policy Research Foundation

IEA EV Outlook: Historical and Projected EV (Cars) Sales

Source: Energy Policy Research's analysis of IEA EV Outlook 2023

Energy Polícy Research Foundation

dation

Data Centers, Internet, Crypto...

Top 10 electrcit in 2022 (TWh)	y consumers					
1. China	8,849		Energy consumpt	tion in 2022		
 2. US	4,548		(TWh): IEA estim	ate		
3. India	1,858		Data centers	240-340		
4. Russia	1,167					
 5. Japan	1,034		Data transmis- sion networks	260-360		
6. Brazil	677		Crypto mining	100-150		
7. Canada	660	#6		100-150		
8. S. Korea	620	The combined electricty	Total	600-850		
9. Germany	577	demand of data centers,				
10. France	468	mining, when compared with countries. Data: IEA, BP				

From Duck Curve to Canyon Curve CAISO's lowest annual net load day (2015-2023)

30.000

New challenges per CAISO:

- Short, steep ramps
- Oversupply risks
- Decreased

frequency response

Massive Requirement for Critical Minerals

Required Growth of Select Minerals Supply in Energy Sector (2020-2040) IEA's Sustainable Development Scenario

REE=Rare earth elements | Multiple purposes include EVs, battery storage, power gen, hydrogen, electric networks. Data from IEA's Critical Minerals Report

	Power Gen Ca	oacity (GW), 2021				
Grid reliability		Cyber security		Charging infrastructure		
Wo	rkforce impact	Reaching Net Zero i	in Electricity	Transn Generation:	nission network	
Public acceptance		 Advanced economies by 2035 China by 2040 Developing countries by 2045 		Ir	termittency	
_			ty	Technol	ogical barriers	
Sı	upply chain disr	uptions Land	use	Grid resilie	nce	
Data: WR	Material/mi	neral shortages	Affor	dability	16	

Additional Slides

Electricity Generation Capacity Scenarios

