World Petroleum Markets
What the Past Tells Us About the Future

June 23, 2008
Senate Staff Briefing
Capitol Hill
Washington, DC

Lucian Pugliaresi
Larry Kumins
Washington, DC
www.eprinc.org
Introduction

Energy Policy Research Foundation Inc. (EPRINC), formerly the Petroleum Industry Research Foundation Inc. (PIRINC)

Founded in NY in 1944

- Moved to Washington from NYC in Feb 2007
- EPRINC brings policy analysis and industry economics to bear on current energy issues

Note: All data in this presentation are from EIA unless otherwise noted. Summary conclusions, comments, etc, are the sole responsibility of EPRINC.
Topics for Today

• EPRINC’s Perspective on Structure and Pricing in the Upstream Crude Market (some history is useful)

• Why Are Crude Prices So High Today?

• What Does History and the Structure of the Crude Oil Market Tell Us About Policy Choices (and what is the problem we are trying to fix?)

• Assessments of Trends in US and World Petroleum Product Markets
1973-74 Arab Oil Embargo

NOT AN EMBARGO, but instead a

• Structural Shift in Ownership and Control of the Resources of the Middle East

• Fundamental Change in Expectations on Production from Middle East Producers

As an Embargo it was a failure, market was integrated (lesson not yet learned by Chavez)
1979 Price “Shock”

OIL MARKET WAS NOT FRAGILE, but instead there was a shift in:

- Expectations regarding regional risk; i.e. more risky

- Prospects for future output from Iran and Iraq were reduced substantially, i.e., access to those reserves would now be delayed
1986 Price Collapse

- Saudi Arabia abandons role as swing producer at low levels of net demand for SA crude

- Shift in expectations on Saudi decision making within OPEC and as regulator of world oil market

- Sustained reduction in oil use as a percentage of GNP in major Western countries
1998 Price Collapse: Six Central Issues

Asian economic crisis brings a collapse in net demand

- OPEC misreads the oil market
- Warm 1997-98 summers in N. America, Europe, Asia
- Increase in Russian oil exports as Ruble collapses
- Chinese authorities decrease imports in Q4 of 1998
- UN authorizes increase in Iraqi exportation in 1998
- Asian economic crisis brings a collapse in net demand
The Peak Oil Problem:
New Supplies Will Be More Expensive,
but We Are Not Running Out of Oil

"One thing is clear: the era of easy oil is over. What we all do next will determine how well we meet the energy needs of the entire world in this century and beyond."
- David J O'Reilly, Chairman & CEO, Chevron Corporation, July 2005
A Series of Unfortunate Events Leading to New Expectations

Positive Expectations

- Oil development in Iraq delayed
- Yukos -- Kremlin taking control of Russian oil development
- OPEC Excess Capacity remains limited
- Outlook positive for expanded output from Nigeria, Mexico, Venezuela, Russia, North Slope

Expectations Shift

- Continuing civil strife in Sudan, Nigeria
- Congress continues ban on ANWR and offshore development
- Nigeria rebels hurt output

Negative Expectations

- Russia takes over Sakhalin II, Chavez Nationalizes Projects
- Korea takes over Russian oil development
- Oil development in Iraq delayed
- Continuing civil strife in Sudan, Nigeria
- Congress continues ban on ANWR and offshore development
- Nigeria rebels hurt output

World Oil Production (EIA)
Expected Production (EIA 2001 Predictions)
Crude Oil Price

Graphs showing changes in oil production and price over time.
San Joaquin Valley

Testing Hubbert-Method Predictions for Reserves and Production

(Billions of Barrels)

<table>
<thead>
<tr>
<th>Year</th>
<th>Cumulative Discoveries</th>
<th>Percent Attributable to 1915</th>
<th>Cumulative production as of</th>
<th>Year 2000 production projected in: (mb/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964</td>
<td>7.7</td>
<td>49%</td>
<td>8.0-9.5</td>
<td>44-112</td>
</tr>
<tr>
<td>1982</td>
<td>11.8</td>
<td>69%</td>
<td>11.9-12.1</td>
<td>189</td>
</tr>
<tr>
<td>2000</td>
<td>16.1</td>
<td>76%</td>
<td>16.1-16.2</td>
<td>597 (actual)</td>
</tr>
</tbody>
</table>

Source: EPRINC, October 2006. *Does the Hubbert Method Provide a Reliable Means for Predicting Future Oil Production*, Richard Nehring, October 2006,
Permian Basin
Testing Hubbert-Method Predictions for Reserves and Production
(Billions of Barrels)

<table>
<thead>
<tr>
<th>Year</th>
<th>Cumulative Discoveries</th>
<th>Percent Attributable to 1950</th>
<th>Cumulative production as of</th>
<th>Year 2000 production projected in: (mb/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964</td>
<td>17.6</td>
<td>85%</td>
<td>19-27.5</td>
<td>162-479</td>
</tr>
<tr>
<td>1982</td>
<td>27.9</td>
<td>86%</td>
<td>28.5-30.5</td>
<td>326-479</td>
</tr>
<tr>
<td>2000</td>
<td>35.2</td>
<td>84%</td>
<td>35.8-37.5</td>
<td>910(actual)</td>
</tr>
</tbody>
</table>

Source: EPRINC, October 2006. *Does the Hubbert Method Provide a Reliable Means for Predicting Future Oil Production*, Richard Nehring, October 2006,
What Does the Permian and San Joaquin Tell Us About the Hubbert Predictions?

- Knowledge and technology grow over time
- Big payoff to long term access to both existing and new oil provinces
- More importantly Hubbert Method does not reveal...........
 - The Backstop Price
 - Total Recovery
What Does This Analysis Tell Us About the Energy Security Problem?

• Current Market Price Probably Tied to a “Perfect Storm” of Unfortunate Events – More Than Declining Reserves (Peak Oil)

• Longer Term Energy Security Problem Remains “A Concentration of Low Cost Reserves Among Relatively Few Players.”

• This Concentration of Low Cost Reserves Poses Risks to the US (wealth transfers, price spikes)

• Focus on Import Dependence Not Likely to Fundamentally Address Energy Security Problem and Can Be Costly. Policy Focus Should be On Reducing Vulnerability.

• What Would be the Elements of an Effective Strategy Given This Analysis?
Gulf of Mexico Deepwater Frontier Exploration and Production Timeline

Individual Prospect: 5,000' Water Depth, 30,000' Drilling Depth

<table>
<thead>
<tr>
<th>Cost (millions)</th>
<th>Cumulative Cost (millions)</th>
<th>Activity</th>
<th>Lease Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1-5</td>
<td>$1-5</td>
<td>Acquire 2D and 3D seismic and evaluate geological, geophysical and engineering data to identify leads/drilling ideas.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prepare bids for lease sale.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>$10-200</td>
<td>$11-205</td>
<td>Lease sale - sealed competitive bidding process.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>$1-2</td>
<td>$12-207</td>
<td>High bid lease awarded (10 year term). Cumulative annual lease rentals.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>$5-10</td>
<td>$17-217</td>
<td>Acquire and interpret 3D and other data to turn ideas into drilable prospects.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Find partners to share costs to drill exploratory well.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perform shallow hazard, archeological and other regulatory permitting requirements to obtain Federal approval to drill.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contract a rig to drill.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>$100-150</td>
<td>$117-367</td>
<td>Drill exploration well.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>$40-60</td>
<td>$157-427</td>
<td>Drill sidetrack to exploration well.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluate results.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>$100-300</td>
<td>$257-727</td>
<td>If encouraging, drill appraisal/delineation well(s) and sidetrack(s).</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluate well results, formulate plan of development for discovery.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prepare and file permits for development, wait for approvals.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>$1,000-5,000</td>
<td>$1,300-5,700</td>
<td>Sanction commerciality, build and install facility, drill and complete producing wells to achieve production.</td>
<td>-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
</tbody>
</table>

Legend:
- Pre-lease evaluation
- Lease Term
- Exploration Phase
- Development Phase

Discovery: If exploration well unsuccessful, start process over.

1st Production:
Some Questions on Expanding Domestic Leasing

• What is the nature of the E&P Process?
• Should we provide more leasing opportunities when so much land is already under lease?
• What are the environmental risks?
• Can production in the future effect prices today?
• How does more domestic oil fit in with efforts to transition to the fuels of the future?
Refined Oil Products, etc.

Senate Staff Briefing
June 23, 2008
World Oil Production and Consumption, 2001-2008

Source: U.S. Energy Information Agency
World Petroleum Consumption and Refining

* Global excess capacity until early 1990s - investment climate?

* 2003: Demand catches up with capacity - China?

* 2007: Demand exceeds capacity?

Declining Dollar Value Relative to Foreign Currency Basket

Source: U.S. Federal Reserve
$135 today would be $93 if the $ value didn't change

Source: EPRINC calculations : U.S. Energy Information Agency,
U.S. Federal Reserve
What’s a Refinery?

- **gases**
 - Isomerization
 - Catalytic Reforming
 - Alkylation
 - Fuel Gas
 - Propane
 - Gasoline Blendstocks
 - Jet Fuel
 - Diesel Fuels and Heating Oils
 - Gasoline and Distillate Blendstocks
 - Lubricating Oils
 - Coke
 - Asphalt

- **naphthas**
 - Hydrotreating
 - Fluid Catalytic Cracking
 - Hydrocracking
 - Lubricants
 - Atmospheric Distillation

- **distillates**
 - Atmospheric Distillation

- **gas oils**
 - Vacuum Distillation

- **residue**
 - Coking
 - Deasphalting
 - Vacuum Distillation
U.S. Oil Refineries History: 1970 - Present

* Many sub-economic, small refineries -- some couldn't make unleaded mogas

* Geographic population shift; local crude supply ran out

* Large scale called for; water access for supply-product distribution; major pipeline access
U.S. Oil Refineries History: 1970 - Present

- 1970s: The Small Refiner Bias in the 1973 price control program encouraged the building of excess small refineries.
- 1979: Price controls end.
 - Closure of small, uneconomic units - adversely impacted by population and crude supply shifts.
 - Capacity at existing, better-located facilities expanded.
 - Remaining refinery campuses become bigger, more efficient.
- Mid-1990s: Capacity grows; demand grows faster.
- 2000s: More investment needed to expand existing refineries.
 - Regulatory issues
 - Capital requirements and investment decisions

What happened to “Refining’s Golden Age?”
Modular Investment in Refinery Upgrades

Need to:

1. Make high specification products
2. Make cleaner gasoline
3. Make gasoline for ethanol blending
4. Make ultra-low sulfur diesel (ULSD)
5. Make across-the-board sulfur reduction
6. Adjust to declining crude quality
7. Reduce refinery site emissions
U.S. Retail Prices: Gasoline vs. Diesel
2006 - 2008

Diesel is $0.70 /gal above gasoline
Gasoline and Distillate Prices: NYH vs. Rotterdam - 2006 - 2008

• 2006/7: Gaso & distillate prices track. NYH gaso has summer spike.

• 2007/8: World distillate prices exceed gasoline.

Source: U.S. Energy Information Agency

Note tight refiner margin.
Recent refiner margin compression

Source: U.S. Energy Information Agency
Gasoline Imports as Percentage of Consumption: 2005 - 2008

Note recent decline in gaso imports

Source: U.S. Energy Information Agency

Note expanded refiner margin.

Source: U.S. Energy Information Agency

Distillate Imports as % of Consumption

Source: U.S. Energy Information Agency
US Ethanol Consumption: 2006 - Present

Mandate requirement assumes 750 million gallons per month for 12 months to reach the 9 billion gallon mandate for 2008.

Source: Renewable Fuels Association
US Ethanol Consumption: 2006 - Present

• Quick ramp-up made it look easy—but really was displacement of MTBE
• Ethanol does not displace much foreign oil. 6 bil gallons per year of ethanol saves approx 100 million bbls of oil.
• Corn prices have risen from $1.60 to $7.00. How much attributable to ethanol driven demand? $1.00? $2.00?
• At $1.00/bu, oil saved cost $130/bbl; at $2.00/bu, the figure is $230 per bbl.
• Current Ethanol Economics Looks Dicey—With high corn prices, low fuel ethanol prices, existing plants earn losses.
• Existing plants have 7 bil gal capacity; mandate calls for 2 bil more
• Plants under construction and planned may not be completed/brought on line
• If corn prices remain stable at current levels, ethanol prices must rise by at least $0.50 per gallon in order for ethanol to be sufficiently profitable to attract investment.
• More capacity needed to meet 9 bil gal mandate for 2008
CBOT Ethanol Futures versus CBOT Corn Futures

Corn and Ethanol prices go **wrong** way

![Graph showing the correlation between Corn and Ethanol Futures prices](image)

Correlation -- 0.1088
Ethanol Production Cost

Ethanol Production Cost ($/gal.)

<table>
<thead>
<tr>
<th>Cost</th>
<th>Wet Mill</th>
<th>Dry Mill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Miscellaneous Inputs</td>
<td>0.56</td>
<td>0.52</td>
</tr>
<tr>
<td>Corn ($6/bu)</td>
<td>2.31</td>
<td>2.14</td>
</tr>
<tr>
<td>Co-product credit</td>
<td>-1.03</td>
<td>-0.41</td>
</tr>
<tr>
<td>Subtotal</td>
<td>2.14</td>
<td>2.55</td>
</tr>
<tr>
<td>Remaining To Cover Fixed Costs/Profit</td>
<td>0.36</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Sources: Simmons & Company International; EPRINC Calculations