Oil Market Study Group:
RFS, the Blend Wall & Refinery Issues

Ben Montalbano, Senior Research Analyst
Before the CSIS Oil Market Study Group
October 15, 2012
Blendwall Reached in 2010, RINs to be Scarce

Generating excess 'carryover' RINs

Mandates increase to levels now can only underblend

Peak Physical Blending Level - Adjusted to Annual Rate - Million Gallons per Month

Conventional Biofuels 'Mandate' - Adjusted to Annual Rate - Million Gallons per Month

Mandated volumes 4.6 billion gallons above physical limit 2013
Blending has Not Reacted to Ethanol Prod. Drop

- Weekly U.S. Refiner and Blender Net Input of Fuel Ethanol (Thousand Barrels per Day)
- Weekly U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels per Day)
Ethanol and MTBE
US Refinery Yields

- U.S. Refinery Yield of Finished Motor Gasoline (Percent)
- U.S. Refinery Yield of Kerosene-Type Jet Fuel (Percent)
- U.S. Refinery Yield of Distillate Fuel Oil (Percent)
- U.S. Refinery Yield of Residual Fuel Oil (Percent)
Yield Shift Needed to Offset 400,000 b/d of Ethanol

A 1.8% shift offsets the ethanol shortfall

- Increase Gasoline Yield by 3%
 - Raise Gasoline Production by:
 - 2000-2011 Range - Raise Gasoline Production by:

- Increase Gasoline Yield by 2%
 - Raise Gasoline Production by:

- Increase Gasoline Yield by 1%
 - Raise Gasoline Production by:

- Increase Gasoline Yield by 2.3%
 - 2000-2011 Range - Raise Gasoline Production by:
NREL Study on Blending Economics

Impact of the Substitution Effect on the Price of a Gallon of E10 (Mileage-Adjusted)

- Ethanol substitution reduces costs
- 6¢ savings
- Ethanol substitution increases cost
- -6¢ savings

Crude oil
$/barrel

Corn
$/bushel

Iso-savings
Mileage adj. savings vs. E0 (¢/gal E10)
Crop Planting, Prices and Ethanol Use

<table>
<thead>
<tr>
<th>Crop Year</th>
<th>Alcohol for fuel ethanol</th>
<th>Planted acreage (Million acres)</th>
<th>Production (Million bushels)</th>
<th>Yield per harvested acre (Bushels per acre)</th>
<th>Weighted-average farm price (dollars per bushel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005/06</td>
<td>1,603.32</td>
<td>81.78</td>
<td>11,112.19</td>
<td>147.90</td>
<td>2.00</td>
</tr>
<tr>
<td>2006/07</td>
<td>2,119.49</td>
<td>78.33</td>
<td>10,531.12</td>
<td>149.10</td>
<td>3.04</td>
</tr>
<tr>
<td>2007/08</td>
<td>3,049.21</td>
<td>93.53</td>
<td>13,037.88</td>
<td>150.70</td>
<td>4.20</td>
</tr>
<tr>
<td>2008/09</td>
<td>3,708.89</td>
<td>85.98</td>
<td>12,091.65</td>
<td>153.90</td>
<td>4.06</td>
</tr>
<tr>
<td>2009/10</td>
<td>4,591.16</td>
<td>86.38</td>
<td>13,091.86</td>
<td>164.70</td>
<td>3.55</td>
</tr>
<tr>
<td>2010/11</td>
<td>5,021.21</td>
<td>88.19</td>
<td>12,446.87</td>
<td>152.80</td>
<td>5.18</td>
</tr>
<tr>
<td>2011/12</td>
<td>5,050.00</td>
<td>91.92</td>
<td>12,358.41</td>
<td>147.20</td>
<td>6.20</td>
</tr>
<tr>
<td>05/06 vs 11/12</td>
<td>214.97%</td>
<td>12.40%</td>
<td>11.21%</td>
<td>-0.47%</td>
<td>210.00%</td>
</tr>
</tbody>
</table>
Corn Consumption by Sector

Source: USDA, World Agricultural Outlook Board, WASDE.
Biofuel Crop Use – 400,000 b/d of Ethanol

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Net Acreage for Fuel (after DDGS 'offset'), million acres</td>
<td>27.51</td>
</tr>
<tr>
<td>Net Acreage for Fuel in waived RFS scenario - 400,000 bbl/d ethanol (excludes exports), no soy-based biodiesel</td>
<td>9.04</td>
</tr>
<tr>
<td>Biofuel Land Use Reduction</td>
<td>18.47</td>
</tr>
<tr>
<td>Biofuel Land Use Reduction, % change</td>
<td>67.13%</td>
</tr>
<tr>
<td>% of 2011/2012 corn and soy harvested acreage not needed for biofuels</td>
<td>11.47%</td>
</tr>
<tr>
<td>DDGS Shortfall, Million Acres of Corn and Soy Equivalent</td>
<td>-7.60</td>
</tr>
<tr>
<td>Net Biofuel Land Use Reduction after DDGS Shortfall</td>
<td>10.86</td>
</tr>
<tr>
<td>Net Biofuel Land Use Reduction after DDGS Shortfall, %</td>
<td>39.49%</td>
</tr>
</tbody>
</table>
Takeaways

• For a waiver to be effective it must cover multiple years – but this is outside of EPA’s authority
 • As long as obligated parties have RVOs looming, they will be inclined to blend at ~10% in order to generate RINs for future compliance

• RFS mandates are creating distortions in fuel and food production – flexibility needed.
 • Must include biodiesel – soy needed for DDGS offset
 • Ethanol is an important part of the gasoline pool and is unlikely to drop below 5% of the gasoline pool in a mandate free environment
 • At current levels ethanol is largely supporting exports rather than reducing crude oil consumption
 • Blendwall hinders next-gen biofuels entrance into market

• A few refiners would drop ethanol completely, others would blend at 10%, most somewhere in between.
 • UC Davis study submitted for EPA waiver comments found 7% blend rate given long term waiver

• Low cost RFS compliance options have been exhausted – the next compliance option for obligated parties is to export product (distillate)

\[
RVO = \text{Standard} \times (\text{gasoline} + \text{diesel}) + \text{Deficit}
\]
RFS Mandates

Billion Gallons

Biomass based Diesel
Any Advanced
Cellulosic Advanced
Corn Ethanol / Other
EPACT 05